Modelling the Interpretation of Literary Allusion with Machine Learning Techniques
نویسندگان
چکیده
A Computational Perspective on Allusion Most literary allusion, the deliberate evocation by one text of a passage in another, is based upon text reuse. Yet most instances of textual similarity are not meaningful literary allusions. The goal of the Tesserae project (http://tesserae.caset.buffalo.edu) is to automatically detect allusion in a corpus of literary texts, primarily Classical Latin poetry. We begin with a large set of textual parallels, and then attempt to model which of these instances of text reuse are meaningful literary allusions and which are not, according to a group of human readers. While initial attempts with a few basic textual features have proven surprisingly effective, here we employ a more complex feature set and machine learning techniques drawn from the field of computer vision in an attempt to improve the results. Novel applications of machine learning, beyond the well known but constrained textual classification tasks of attribution and categorization, have the potential to be transformative for complex analysis tasks in the Digital Humanities.
منابع مشابه
Fault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملTypes of Sketch and Deployment of Allusion on Vertical Axis of Simin Behbahani\'s New Sonnets
Simin Behbahani is one of the contemporary ingenious and efficacious poets. In her New-Sonnets (Nou-Ghazal), the frequency and variety of allusions are too many, so that the allusion is one of the most striking features of her poetic style. Accurate understanding of semantic capacities and structural concinnities of the word, which has allusive theme, depends on being familiar with meaning and ...
متن کاملMachine learning algorithms in air quality modeling
Modern studies in the field of environment science and engineering show that deterministic models struggle to capture the relationship between the concentration of atmospheric pollutants and their emission sources. The recent advances in statistical modeling based on machine learning approaches have emerged as solution to tackle these issues. It is a fact that, input variable type largely affec...
متن کاملModeling of Chloride Ion Separation by Nanofiltration Using Machine Learning Techniques
In this work, several machine learning techniques are presented for nanofiltration modeling. According to the results, specific errors are defined. The rejection due to Nanofiltration increases with pressure but decreases with increasing the concentration of chloride ion. Methods of machine learning represent the rejection of nanofiltration as a function of concentration, pH, pressure and also ...
متن کاملMachine Learning and Citizen Science: Opportunities and Challenges of Human-Computer Interaction
Background and Aim: In processing large data, scientists have to perform the tedious task of analyzing hefty bulk of data. Machine learning techniques are a potential solution to this problem. In citizen science, human and artificial intelligence may be unified to facilitate this effort. Considering the ambiguities in machine performance and management of user-generated data, this paper aims to...
متن کامل